China supplier China Factory Price Mini Electric Rotary Vane Vacuum Pump 2 Stage Vp215 manufacturer

Product Description

Application scope and characteristics:

Greentech International (Xihu (West Lake) Dis.) Co., Ltd is the professional vacuum pump supplier. 2BE1 series water ring vacuum pumps and compressors are the products with high efficiency and economic power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.

These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economic power.

The main characteristics of 2BE1 series products:

All the bearings are the imported products with the brand name of CHINAMFG orNTN for ensuring the precise orientation and the high stability during the working of the pump.

The material of the impeller is QT400 nodular iron or stainless steel for ensuring the stability when the pump works under the rigorous condition and can extend the lifetime of the pump.

The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE1 series pumps.

The shaft bushing is made of stainless steel to improve the lifetime of the pump 5 times than the normal material.

The V-belt pulley (when the pump is driven by the belt) is used the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.

The coupling is used to drive the pump directly. The flexible part connecting the 2 half coupling is made of polyurethane that makes the pump more reliable.

The unique design to set the separator above the pump saves the space and decreases the noise efficiently.

All the parts are cast by the resin sands that make the pump surface very smooth. It is not necessary to cover the surface of the pumps with putty and gives out the heat efficiently.

The mechanical seals (optional) are used the imported products to avoid the leakage when the pump works for a long time.

Type Speed
(Drive type)
r/min
Shaft power
kW
Motor power
kW
Motor
type
Limited vacuum
mbar
  Weight
(Whole set)
kg
Suction capacity
m 3 /h m 3 /min
2BE1 151-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
10.8
7.2
9.2
13.2
14.8
15
11
11
15
18.5
Y160L-4
Y160M-4
Y160M-4
Y160L-4
Y180M-4
33mbar
(-0.098MPa)
405
300
360
445
470
6.8
5.0
6.0
7.4
7.8
469
428
444
469
503
2BE1 152-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
12.5
8.3
10.5
15.0
17.2
15
11
15
18.5
22
Y160L-4
Y160M-4
Y160L-4
Y180M-4
Y180L-4
33mbar
(-0.098MPa)
465
340
415
510
535
7.8
5.7
6.9
8.5
8.9
481
437
481
515
533
2BE1 153-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
16.3
10.6
13.6
19.6
22.3
18.5
15
18.5
22
30
Y180M-4
Y160L-4
Y180M-4
Y180L-4
Y200L-4
33mbar
(-0.098MPa)
600
445
540
660
700
10.0
7.4
9.0
11.0
11.7
533
480
533
551
601
2BE1 202-0 970(D)
790(V)
880(v)
1100(V)
1170(V)
1300(V)
17
14
16
22
25
30
22
18.5
18.5
30
30
37
Y200L2-6
Y180M-4
Y180M-4
Y200L-4
Y200L-4
Y225S-4
33mbar
(-0.098MPa)
760
590
670
850
890
950
12.7
9.8
11.2
14.2
14.8
15.8
875
850
850
940
945
995
2BE1 203-0 970(D)
790(V)
880(V)
1100(V)
1170(V)
1300(V)
27
20
23
33
37
45
37
30
30
45
45
55
Y250M-6
Y200L-4
Y200L-4
Y225M-4
Y225M-4
Y250M-4
33mbar
(-0.098MPa)
1120
880
1000
1270
1320
1400
18.7
14.7
16.7
21.2
22.0
23.3
1065
995
995
1080
1085
1170
2BE1 252-0 740(D)
558(V)
660(V)
832(V)
885(V)
938(V)
38
26
31.8
49
54
60
45
30
37
55
75
75
Y280M-8
Y200L-4
Y225S-4
Y250M-4
Y280S-4
Y280S-4
33mbar
(-0.098MPa)
1700
1200
1500
1850
2000
2100
28.3
20.0
25.0
30.8
33.3
35.0
1693
1460
1515
1645
1805
1805
2BE1 253-0 740(D)
560(V)
660(V)
740(V)
792(V)
833(V)
885(V)
938(V)
54
37
45
54
60
68
77
86
75
45
55
75
75
90
90
110
Y315M-8
Y225M-4
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y280M-4
Y315S-4
33mbar
(-0.098MPa)
2450
1750
2140
2450
2560
2700
2870
3571
40.8
29.2
35.7
40.8
42.7
45.0
47.8
50.3
2215
1695
1785
1945
1945
2055
2060
2295
2BE1 303-0 740(D)
590(D)
466(V)
521(V)
583(V)
657(V)
743(V)
98
65
48
54
64
78
99
110
75
55
75
75
90
132
Y315L2-8
Y315L2-10
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y315M-4
33mbar
(-0.098MPa)
4000
3200
2500
2800
3100
3580
4000
66.7
53.3
41.7
46.7
51.7
59.7
66.7
3200
3200
2645
2805
2810
2925
3290
2BE1 305-1
2BE1 306-1
740(D)
590(D)
490(V)
521(V)
583(V)
657(V)
743(V)
102
70
55
59
68
84
103
132
90
75
75
90
110
132
Y355M1-8
Y355M1-10
Y280S-4
Y280S-4
Y280M-4
Y315S-4
Y315M-4
160mbar
(-0.085MPa)
4650
3750
3150
3320
3700
4130
4650
77.5
62.5
52.5
55.3
61.2
68.8
77.5
3800
3800
2950
3000
3100
3300
3450
2BE1 353-0 590(D)
390(V)
415(V)
464(V)
520(V)
585(V)
620(V)
660(V)
121
65
70
81
97
121
133
152
160
75
90
110
132
160
160
185
Y355L2-10
Y280S-4
Y280M-4
Y315S-4
Y315M-4
Y315L1-4
Y315L1-4
Y315L2-4
33mbar
(-0.098MPa)
5300
3580
3700
4100
4620
5200
5500
5850
88.3
59.7
61.7
68.3
77.0
86.7
91.7
97.5
4750
3560
3665
3905
4040
4100
4100
4240
2BE1 355-1
2BE1 356-1
590(D)
390(V)
435(V)
464(V)
520(V)
555(V)
585(V)
620(V)
130
75
86
90
102
115
130
145
160
90
110
110
132
132
160
185
Y355L2-10
Y280M-4
Y315S-4
Y315S-4
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
160mbar
(-0.085MPa)
6200
4180
4600
4850
5450
5800
6100
6350
103.3
69.7
76.7
80.8
90.8
98.3
101.7
105.8
5000
3920
4150
4160
4290
4300
4350
4450
2BE1 403-0 330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
97
110
131
160
203
234
132
132
160
200
250
280
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
Y355M2-4
Y355L1-4
33mbar
(-0.098MPa)
5160
5700 6470
7380
8100
8600
86.0
95.0
107.8
123.0
135.0
143.3
5860
5870
5950
6190
6630
6800
2BE1 405-1
2BE1 406-1
330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
100
118
140
170
206
235
132
160
185
200
250
280
Y315M-4
Y315L1-4
Y315L2-4
Y315L2-4
Y355M2-4
Y355L1-4
160mbar
(-0.085MPa)
6000
6700
7500
8350
9450
15710
100.0
111.7
125.0
139.2
157.5
168.3
5980
6070
6200
6310
6750
6920

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Wet
Customization:
Available

|

rotary vane pump

Can Rotary Vane Pumps Handle Corrosive Gases or Vapors?

Rotary vane pumps are generally not suitable for handling corrosive gases or vapors due to their construction and materials. Here’s a detailed explanation:

– Construction: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots within the rotor. The pumping chamber is sealed by these vanes, creating the necessary vacuum or pressure. The internal components of rotary vane pumps are typically made of materials such as cast iron, steel, or aluminum. While these materials are suitable for many applications, they may not withstand the corrosive effects of certain gases or vapors.

– Corrosion Concerns: Corrosive gases or vapors can react with the internal components of the pump, leading to material degradation, erosion, or chemical reactions. This can result in the formation of deposits, pitting, or damage to the pump’s surfaces. Corrosion can compromise the pump’s performance, efficiency, and longevity. In some cases, it can also introduce contaminants into the pumped medium, affecting the quality of the process or downstream equipment.

– Material Compatibility: The compatibility of the pump’s internal materials with the corrosive gases or vapors is a critical consideration. Many corrosive gases or vapors require specialized materials such as stainless steel, Hastelloy, or other corrosion-resistant alloys to withstand their effects. Rotary vane pumps typically do not have internal components made from these materials, making them unsuitable for handling corrosive substances.

– Alternative Solutions: If corrosive gases or vapors need to be handled, alternative pump technologies specifically designed for such applications may be more appropriate. For example, chemical-resistant pumps made from materials compatible with the corrosive substances, such as diaphragm pumps, magnetic drive pumps, or certain types of centrifugal pumps, are commonly used. These pumps incorporate corrosion-resistant materials and specialized sealing mechanisms to ensure safe and reliable operation.

– Protective Measures: In some cases, it may be possible to use rotary vane pumps for applications involving mildly corrosive gases or vapors by implementing protective measures. This can include installing chemical traps or filters in the pump system to remove or neutralize corrosive substances before they reach the pump. However, the effectiveness and feasibility of such measures depend on the specific application and the level of corrosion resistance required.

It’s important to consult with pump manufacturers or industry experts to determine the most suitable pump technology for handling corrosive gases or vapors. They can provide guidance on selecting the appropriate pump materials and design to ensure safe and efficient operation in corrosive environments.

Overall, while rotary vane pumps offer many advantages in various applications, they are generally not recommended for handling corrosive gases or vapors due to the potential for material damage and performance degradation. Using pumps specifically designed for corrosive applications is crucial to maintain operational integrity and prevent costly failures.

rotary vane pump

How Does a Rotary Vane Pump Work?

A rotary vane pump is a type of positive displacement pump commonly used for creating vacuum or low-pressure environments. Here’s a detailed explanation of how a rotary vane pump works:

– Basic Principle: A rotary vane pump operates based on the principle of positive displacement. It uses a rotating mechanism with sliding vanes to create a continuous pumping action.

– Construction: A typical rotary vane pump consists of several key components:

– Rotor: The rotor is the central rotating element of the pump. It is typically offset from the center of the pump chamber and is connected to a drive mechanism, such as an electric motor.

– Vanes: The vanes are sliding elements that are inserted into radial slots in the rotor. They can be made of various materials, such as carbon, graphite, or synthetic materials, and are in constant contact with the pump chamber walls.

– Stator: The stator is the stationary part of the pump. It forms the pump chamber and is typically cylindrical in shape with an eccentric bore that accommodates the rotor.

– Inlet and Outlet Ports: The pump has separate inlet and outlet ports. The inlet allows the entry of gas or fluid into the pump, while the outlet facilitates the discharge of the pumped medium.

– Operation:

1. Starting Position: Initially, the rotor is positioned eccentrically within the stator, creating spaces, or cells, between the rotor vanes and the stator walls.

2. Intake Stroke: As the rotor rotates, one vane enters the intake port. This creates an expanding cell, leading to a decrease in pressure within the cell. This pressure drop causes gas or fluid to enter the pump through the inlet port and fill the expanding cell.

3. Compression Stroke: As the rotor continues to rotate, the vane moves along the stator wall, reducing the size of the cell. This compression action compresses the gas or fluid within the cell, increasing its pressure.

4. Discharge Stroke: The compressed gas or fluid is then pushed towards the outlet port as the vane moves further along the stator wall. This leads to the expulsion of the medium from the pump through the outlet port.

5. Repeat Process: The above steps are repeated continuously as the rotor continues to rotate, creating a continuous pumping action.

– Sealing and Lubrication: To ensure efficient operation and prevent leakage, rotary vane pumps require proper sealing and lubrication. The vanes slide against the stator walls, forming a seal to minimize backflow and leakage. Often, a small amount of oil or lubricant is introduced into the pump chamber to provide lubrication and maintain the seal between the vanes and the stator walls.

– Applications: Rotary vane pumps are commonly used in a variety of applications, including HVAC systems, vacuum packaging, laboratory equipment, automotive industry, and industrial processes that require vacuum or low-pressure conditions.

– It’s important to note that the performance of a rotary vane pump can be influenced by factors such as the speed of rotation, the number and dimensions of vanes, the quality of sealing, and the type of lubrication used.

In summary, a rotary vane pump operates based on the principle of positive displacement. It utilizes a rotating rotor with sliding vanes inside a stationary stator to create a continuous pumping action. The pump’s design allows for the intake, compression, and discharge of gas or fluid, making it suitable for various applications requiring vacuum or low-pressure environments.

China supplier China Factory Price Mini Electric Rotary Vane Vacuum Pump 2 Stage Vp215   manufacturer China supplier China Factory Price Mini Electric Rotary Vane Vacuum Pump 2 Stage Vp215   manufacturer
editor by CX 2024-03-06

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *