China factory Single-Stage Rotary Vane Vacuum Pump for Sale vacuum pump design

Product Description

Single-Stage Rotary Vane Vacuum Pump

Features and use:
1.Rotary vacuum pump is the direct type mini vacuum pump
2. Specially designed for low temperature environment, guarantee in the winter environmental temperature under the condition of low normal starting.
3. Optimization design, the vacuum degree increasing, increased efficiency, suitable for vacuum cooling, car repairs, medical machinery, vacuum packaging,
Gas analysis, printing machinery and so on all kinds of vacuum suction.
 
 
Scope of application:

Widely used in vacuum packaging, drying, distillation, concentration, loading and unloading, and attract, vacuum forming, and other fields.

Product parameters:

tem NO. Frequency Flow Rate Ultimate Vacuum Stage Power  nlet Port Oil Capacity Weight Dimensions
HZ L/min mbar HP Flare ml kg mm
 VP125(VP-1.5) 60 84 0.05 1 0.25 1/4″ 3 China, HangZhou, ZHangZhoug, China.

ONEREEL is specialized in the design and manufacture Steel Spools, Plastic Spools, Cable roller, Yarn Bobbin,  aluminum spool , Cable Reel Stand,  Sheave Pulley, Cable Conveyor, Hydraulic Puller Tensioner, Gin Poles, Cable Pulling Winch, Safety Tools, Wire Grip, Plastic Parts, and Pump in the industry since 1991. All of our customer spool and wire carrier are engineered and manufactured in our 120,000 square foot state-of-the-art manufacturing plant located in HangZhou, ZHangZhoug.
ONEREEL is specialized in the manufacture of reels for cables and electric wires, iron axles, disc spool for steel cables and various delivery reels. With strong technological capabilities and full series of production equipment. All of our products go through the dynamic and static balance tests. We have passed the quality system certification ISO9001:2000 to ensure the product quality. Following the standards of GB4004-83, JB/T8997, DIN46395 and DIN46397 in productions. 

 

 

Hot Product

Our Customer

 

 

Packaging & Transportation

 

Authoritative Certificate

 

 

FAQ

Q1: Can I get samples?
A: According to spool model and material, we will advise.
Q2: How long is the sample LEAD TIME? 
A: For existing samples, it takes 2-3 days. If no stock, we will advise lead time.
Q3: Can you develop new products?
A: Yes, we have new products developing ability and we are good at developing new mold.
Q4: How much is the freight charge?
A: It depends on spool package volume, if small quantity, volume and urgent goods, 
we may advise FEDEX or other couriers’ charge for your check. 
If volume bigger and by seaway suitable, we provide FOB or CIF price to you.
Q5: What format of the file do you need if I want my own design?
A: We have our own mound workshop and can provide spool or other plastic product developing and injection service.
Q6: How about your service?
A: We have pre-sale service, in-sale service and after-sale service. As “Customer First” is the most important principle of company operation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Forever
Warranty: One Year
Oil or Not: Oil Free
Structure: Jet Flow Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Samples:
US$ 76.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

rotary vane pump

What Is the Energy Efficiency of Rotary Vane Pumps?

The energy efficiency of rotary vane pumps can vary depending on several factors, including the design of the pump, operating conditions, and specific application requirements. Here’s a detailed explanation of the energy efficiency considerations for rotary vane pumps:

– Design Efficiency: The design of the rotary vane pump can significantly impact its energy efficiency. Modern rotary vane pumps are designed with efficiency in mind, incorporating features such as optimized rotor profiles, improved sealing mechanisms, and reduced internal leakage. These design enhancements aim to minimize energy losses and maximize the pump’s overall efficiency.

– Motor Efficiency: The motor driving the rotary vane pump plays a crucial role in its energy efficiency. High-efficiency motors, such as those meeting premium efficiency standards (e.g., NEMA Premium Efficiency or IE3), can contribute to the overall energy efficiency of the pump system. Using motors with appropriate power ratings and matching the motor size to the pump’s requirements can help optimize energy consumption.

– Operating Point: The operating point at which the rotary vane pump operates can impact its energy efficiency. Pumps often have an optimum operating range where they achieve the highest efficiency. Operating the pump within this range can help minimize unnecessary energy consumption. It’s important to consider the system requirements and select a pump that can operate efficiently under the expected operating conditions.

– Control and Automation: Implementing effective control and automation strategies can enhance the energy efficiency of rotary vane pump systems. Variable frequency drives (VFDs) or speed control mechanisms can adjust the pump’s speed or output to match the required flow rate, reducing energy wastage. Additionally, incorporating sensors and control algorithms that optimize pump operation based on demand can further improve energy efficiency.

– System Design and Integration: The overall system design and integration can influence the energy efficiency of rotary vane pumps. Proper sizing of the pump based on the system requirements, minimizing pressure losses in the piping network, and optimizing the layout of the system components can all contribute to improved energy efficiency. Considering the system as a whole and implementing energy-saving practices can result in significant energy savings.

– Maintenance and Performance Monitoring: Regular maintenance and performance monitoring are essential for maintaining the energy efficiency of rotary vane pumps. Ensuring proper lubrication, monitoring for leaks or wear, and addressing any performance issues promptly can prevent energy losses due to degraded pump performance. Periodic performance assessments and efficiency measurements can help identify opportunities for optimization and energy-saving initiatives.

It’s important to note that the energy efficiency of rotary vane pumps can vary among different pump models and manufacturers. When selecting a rotary vane pump, it is advisable to review the manufacturer’s specifications, efficiency data, and performance curves to evaluate the pump’s energy efficiency characteristics.

Overall, by considering design efficiency, motor efficiency, operating point, control strategies, system design, and maintenance practices, it is possible to enhance the energy efficiency of rotary vane pumps and reduce energy consumption in various applications.

rotary vane pump

Can Rotary Vane Pumps Create a Deep Vacuum?

Rotary vane pumps are capable of creating a vacuum, but the depth of the vacuum they can achieve is limited compared to other types of vacuum pumps. Here’s a detailed explanation:

Rotary vane pumps utilize a positive displacement mechanism to create a vacuum. As the rotor rotates, the vanes slide in and out of the rotor slots, creating expanding and contracting chambers. This action allows the pump to draw in gas or fluid from the inlet port and then expel it through the outlet port.

While rotary vane pumps can achieve relatively high vacuum levels, they are not typically designed to create extremely deep vacuums. The ultimate vacuum level that a rotary vane pump can achieve depends on several factors, including the specific pump design, the quality of the sealing surfaces, the lubrication system, and the operating conditions.

In general, rotary vane pumps can achieve vacuum levels in the range of a few millibars (thousandths of atmospheric pressure) or slightly lower. However, they may struggle to reach the ultra-high vacuum levels required in certain applications, such as semiconductor manufacturing or scientific research.

For applications that demand deeper vacuums, other types of pumps, such as turbomolecular pumps or cryogenic pumps, are typically employed. These pumps are specifically designed to operate in the high-vacuum or ultra-high-vacuum range and can achieve significantly lower pressures than rotary vane pumps.

It’s important to consider the specific requirements of your application when selecting a vacuum pump. If you need to create a deep vacuum, you may need to explore alternative pump technologies that are better suited to achieve the desired vacuum level.

In summary, while rotary vane pumps can create a vacuum, their capability to achieve deep vacuums is limited compared to specialized high-vacuum pumps. The ultimate vacuum level achievable with a rotary vane pump depends on various factors, and if ultra-high vacuum levels are required, alternative pump technologies should be considered.

China factory Single-Stage Rotary Vane Vacuum Pump for Sale   vacuum pump design		China factory Single-Stage Rotary Vane Vacuum Pump for Sale   vacuum pump design
editor by Dream 2024-04-26

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *